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Abstract

This paper discusses the dynamic pre-buckling of finite cylindrical shells in the propagation and reflection of axial
stress waves. By introducing the Hamiltonian system into dynamic buckling of structures, the problem can be described
mathematically in a symplectic space. The solutions of Hamiltonian dual equations shown in canonical variables are
obtained. The problem is reduced to the determination of eigenvalues and eigensolutions, with the former indicating
critical buckling loads and the latter buckling modes. Numerical example presented shows phenomena of axisymmetric
and non-axisymmetric dynamic buckling subject to impacts of axial load.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There has been intensive attention on dynamic buckling of structures as compared to static buckling
problems because the former has significant engineering characteristics as well as important design impli-
cations. Dynamics buckling is local and it involves an extension process. The local phenomena have rela-
tions with propagation of stress waves proven by experiments. Therefore, it is necessary and far-reaching to
discuss dynamic buckling of structures with respect to propagation and reflection of waves.
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Nomenclature

E Young�s modulus
l Poisson�s ratio
q material density
h, r, l thickness, middle surface radius and length of cylindrical shell, respectively
(r, h, x) circular cylindrical coordinate
u x-axial, centroidal axial, displacement of a shell
w lateral displacement
m circumferential displacement
D, K D = Eh3/[12(1 � l2)] and K = Eh/(1 � l2), the shell felxural rigidity and stiffness
ei, eij membrane strains and shear strains in the neutral surface
ji, s bending and torsional strains in the neutral surface
Ni, Nij internal stresses and shear stresses
Mi, Mij bending and torsional moments
c c = [E/q(1 � l2)]1/2, wave speed
N axial compressive load
L Lagrange function
H Hamiltonian function
q, p mutually dual vectors
H Hamiltonian operator matrix
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For more than 40 years, dynamic buckling of cylindrical shells subject to axial impact has been of inten-
sive study. Coppa (1960) discovered in an experiment that the mode of dynamic buckling is similar to that
of static buckling. Through experiments, Wang et al. (1983) reported that axisymmetric and non-axisym-
metric buckling modes depend upon the axial impact velocity and the thickness of cylindrical shells. They
put forward the first and second critical velocities in allusion to two modes upwards in the middle thickness
shell. Ma et al. (2003) further discussed the second critical velocities. Besides, the effect of stress wave was
noticed in experiments (Chen et al., 1992) which explored the connection between axial stress waves and
buckling phenomena. Theoretical methods and numerical results in agreement with physical phenomenon
and experiments have been developed. Xu et al. (1995, 1997a) discussed dynamics of axisymmetric and non-
axisymmetric buckling, respectively, in which the propagation of axial stress wave was considered using the
method of modal functions. With the aid of the modal method, Jamal et al. (2004), Abdullah et al. (2003)
and Sofiyev and Aksogan (2004) recently investigated some buckling problems of cylindrical shells. How-
ever, the method requires expansion of modal functions to solve partial differentiations, in which the space
of solutions is not complete. With respect to numerical methods, a number of researchers discussed buck-
ling of cylindrical shells by using finite element method Choong and Ramm (1998), mixed finite elements
(Uchiyama and Yamada, 2003), p-element method (Lim and Ma, 2003; Lim et al., 2003), the Ritz method
(Tian et al., 1999) and asymptotic-numerical method (Fettahli and Steele, 1974; Tovstik and Smirnov, 2001;
Boutyour et al., 2004). Karagiozova and Jones (2001, 2002) considered the influence of stress waves by
employing the finite element method and analyzed dynamic progressive buckling from in the viewpoint
of the authors wave propagation resulting from an axial impact. Karagiozova and Alves (2004a,b) studied
buckling problem via the combination of theoretical analysis, experiment, numerical analysis and observa-
tion. These works revealed distinctly some phenomenon and behaviors of bucklings of cylindrical shell. In
various investigations, specific attention has been paid to the fact that the buckling load of thin cylindrical
shell under axial compression depends significantly on the initial imperfection of the specimen. Because of
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imperfection sensitivity, modes and extended process of post-buckling of shells cannot be ensured. For this
problem, quantitative analyses have been published by scholars, for example Florence and Goodier (1968),
Arbocz and Hol (1991), Hambly and Calladine (1996), Jamal et al. (1999) and Lancaster et al. (2000). The
supposition of initial imperfections should be appropriate or else results cannot be convincing. In the
author�s viewpoint, it should be reasonable that pre-buckling modes are considered as initial imperfections
of post-buckling problems.

The methods mentioned above belong to the Lagrange formulation which is difficult for solving higher
order partial differentiations. By introducing Hamiltonian formulation into theory of elasticity, the method
of separation of variables has been generalized. Zhong (2004) investigated the plane problem of isotropic
elasticity with the aid of Hamiltonian system. Steele and Kim (1992) established a modified mixed varia-
tional principle and the state-vector equation, i.e. the Hamiltonian canonical equation, for elastic bodies
and shells with spatial variables as the independent variables. In the Hamiltonian system, there exists an
adjoint symplectic ortho-normalization relationship with the corresponding expansion theorem among
the eigenfunction-vectors in elasticity (Zhong, 2004; Xu et al., 1997b). From this symplectic system, com-
plete solutions can be obtained.

In this paper, the Hamiltonian formulation for dynamic buckling of shells is investigated. In the prop-
agation of longitudinal waves resulted from axial impact loads, the fundamental equations or the dual
equations and the corresponding boundary conditions are obtained. In the symplectic space, the critical
buckling loads and modes are described by a direct method with the aid of a complete space of solutions.
2. The fundamental problem

Consider an elastic cylindrical shell with thickness h, middle surface radius r, length l, Young�s modulus
E and Poisson�s ratio l. The shell is subjected to an axial impact load at the end (x = 0). A circular cylin-
drical coordinate (r, h, x) is adopted such that the x-axis is along the centroidal axis and (w, v, u) are the
corresponding displacements. The constitutive relations are expressed as
N x ¼ Kðex þ lehÞ
N h ¼ Kðeh þ lexÞ
N xh ¼ Kð1� lÞexh=2

Mx ¼ Dðjx þ ljhÞ
Mh ¼ Dðjh þ ljxÞ
Mxh ¼ Dð1� lÞs

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ
where D = Eh3/[12(1 � l2)] and K = Eh/(1 � l2). The membrane strain components and curvature compo-
nents in the neutral surface are
ex ¼
ou
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eh ¼ 1
r
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8>>>>>><
>>>>>>:
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ð2Þ
The extension potential energy density, bending potential energy density, work of external load and ki-
netic energy of the shell subjected to an axial impact load are denoted by Pe, Pj, Pw and Pt, respectively.
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The Lagrange function can be shown as
P ¼ Pe þPj þPw �Pt

¼ 1

2
K e2
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h þ 2lexeh þ

1� l
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e2
xh

� �
þ 1

2
Dðj2
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h þ 2ljxjh þ 2ð1� lÞs2Þ � N
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x �
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2
qh

ou
ot

� �2

ð3Þ

where wx = � ow/ox is the bending angle, q the material density and N an axial compressive load. Consider
internal forces uniformity along the circumferential direction, the Lagrange function becomes
L ¼ K
2
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ox
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ð4Þ
Employing the principle of minimum potential energy, the governing equations expressed in terms of dis-
placements can be obtained. The displacement method belongs to the Lagrange formulation or it is a La-
grange system.
3. Propagation and reflection of longitudinal stress wave

It is noticed that the longitudinal wave equation can be obtained from Eq. (4) via a variational approach.
The process results in decoupling of other equations. The equation is
o2u
ot2
� c2 o2u

ox2
¼ 0 ð5Þ
where the wave speed is c = [E/q(1 � l2)]1/2. The axial force can be confirmed by wave propagation base on
wave equation and the end conditions, with an impact at x = 0 and with no impact at x = l. The boundary
condition is about longitudinal displacement u. It implies a temporal function of force, or N = N(x, t). In
this case, we may assume a stepped axial impact load Nx(0, t) = �NH(t), where N is a constant and H(t) is
a step function: H(t) = 1 if t P 0 and H(t) = 0 if t < 0. When an impact at the end of shell takes place, the
longitudinal stress wave begins to propagate from the end and the elastic wave front is xe = ct. After the
wave arrives at the other end, the longitudinal wave reflects. Here, we assume the reflection end is a clamped
support, or u(l, t) = 0, and only the first reflection (t < 2l/c) is considered. For an ideal, perfect shell the
axial internal force for propagation and reflection of wave can be expressed as (Xu et al., 1997a)
Nx ¼

�N 0 6 x 6 xe; t 6 l=c

0 xe < x 6 l; t 6 l=c

�N 0 6 x < xr; t > l=c

�2N xr 6 x 6 l; t > l=c

8>>><
>>>:

ð6Þ
where the reflection of wave front is xr = 2l � ct.
4. Hamiltonian system and the adjoint symplectic ortho-normalization

Consider an elastic shell with radius r as the character length measured from the shell middle surface. We
adopt the dimensionless parameters X = x/r, W = w/r, L = l/r, T = tc/r and c = (r/h)2/12, Ncr = Nr2/D. Let
an over-dot denotes differentiation with respect to X, namely ( Æ ) = (o/oX)( ) in which the X-coordinate can
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be taken in analogy to the time coordinate, and ( ) 0 = (o/oh)( ) � oh( ). The dimensionless Lagrange func-
tion correlated with radial displacement W can be simplified as
LðW Þ ¼ c
2

W 2 þ 1

2
f €W

2 þ ðW 00Þ2 þ 2 €W W 00 � ð1� lÞ½ €W W 00 � ð _W
0Þ2�g � N cr

2
ð _W Þ2 ð7Þ
The dual variable of the displacement W can be obtained as
p1 ¼
dL

d _W
¼ �ðW

...

þ _W
00Þ � N cr

_W ð8Þ
Let bending angle wx be regarded as the fundamental variables and introducing q = {W, wx}T � {q1, q2}T,
the Lagrange function can be rewritten as
Lðq1; q2Þ ¼
c
2

q2
1 þ

1

2
fð� _q2 þ q001Þ

2 � ð1� lÞ½€q1q001 � ð _q01Þ
2�g � N cr

2
q2

2 ð9Þ
The Hamiltonian formulation requires the dual vector p as
p ¼
p1

p2

� �
¼ dL

d _q
¼
�ðq1

... þ _q001Þ � N crq2

�ð� _q2 þ q001Þ

� �
ð10Þ
The physical components of the dual vector p consists of the dimensionless effective shear and moment, or
p1 ¼
r2

D
ðQx þ NwxÞ ¼ �

o3W

oX 3
þ o3W

oXoh2

� �
þ N cr

oW
oX

� �

p2 ¼
r
D

Mx þMh

1þ l
¼ � o

2W

oX 2
þ o

2W

oh2

� �
8>>><
>>>:

ð11Þ
The mutual dual vectors qand p are regarded as independent variables. Based on these dual vectors, the
Hamiltonian function can be introduced as
Hðq; pÞ ¼ pT _q� Lðq; pÞ ¼ 1

2
p2

2 � p1q2 þ p2q001 �
c
2

q2
1 þ

1

2
N crq2

2 ð12Þ
Substituting Eq. (12) into the variational equation
d
Z
½pT _q� Hðq; pÞ�dX ¼ 0 ð13Þ
then the fundamental equations, or the dual equations, of the Hamiltonian system can be obtained via inte-
gration by parts as
_q ¼ dH
dp

_p ¼ � dH
dq

8>><
>>: ð14Þ
Rewriting Eq. (14) in matrix-vector form, one has
_q1

_q2

_p1

_p2

8>>>><
>>>>:

9>>>>=
>>>>;
¼

0 �1 0 0

@2
h 0 0 1

c 0 0 �@2
h

0 �N cr 1 0

2
66664

3
77775

q1

q2

p1

p2

8>>>><
>>>>:

9>>>>=
>>>>;

ð15Þ
It can be proven that Eq. (15) indicate directly equilibrium of forces and moments.
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Let the state vector be w = {qT, pT}T, Eq. (15) can be rewritten as
_w ¼ Hw: ð16Þ

The solution of Eq. (16) can be represented by
wðX ; hÞ ¼
X

wmðhÞekmX ð17Þ
where wm and km are unknown eigenfunction and eigenvalue, respectively, of the eigenproblem
Hwm ¼ kmwm ð18Þ

It can be proven that (i) H is Hamiltonian operator matrix; (ii) the Hamiltonian eigenproblem (18) has an
adjoint symplectic orthogonality relationship between its eigenvectors; (iii) if km is an eigenvalue, �km is
also an eigenvalue; (iv) the space of eigenvectors, which is formulated by eigensolutions, is complete;
and (v) any state vector w can always be expanded by a linear combination of the eigen-function-vectors.
The proof can be referred to Zhong (2004) and Xu et al. (1997b).
5. The eigenvalue solutions and the sub-symplectic system

Consider the eigenvalue problem which is separable into zero and non-zero eigenvalue solutions. In par-
ticular, zero is one of the eigenvalues, or k = 0. In this case Eq. (16) becomes Hw = 0. The solution is evi-
dently a form of the buckling in only the circumferential direction, which is independent of the longitudinal
coordinate, and it is not within the scope of this paper. For the problem of non-zero eigenvalue (k 5 0), a
sub-symplectic system is introduced. The Lagrange function (7) can be expressed as
LðW Þ ¼ 1

2
ðcþ k4 � N crk

2ÞW 2 þ 1

2
fðW 00Þ2 þ 2k2WW 00 � ð1� lÞk2½WW 00 � ðW 0Þ2�g ð19Þ
where coordinate h is taken in analogy to the time coordinate. Introducing f = {W, /}T � {f1, f2}T where /
= �W 0 and similar to Eqs. (8)–(10), the dual variables are obtained as
g ¼
g1

g2

� �
¼ dL

df 0
¼ �ðf 0001 þ k2f 01Þ

�ð�f 002 þ k2f1Þ

( )
ð20Þ
The dual vector g denotes shear and moment. The other Hamiltonian function is
Hðf; gÞ ¼ gTf 0 � Lðf; gÞ ¼ 1

2
g2

2 � g1f2 þ k2g2f1 �
1

2
ðc� N crk

2Þf 2
1 ð21Þ
The Hamiltonian dual equations can be written as
f 01
f 02
g01
g02

8>>><
>>>:

9>>>=
>>>;
¼

0 �1 0 0

k2 0 0 1

c� k2N cr 0 0 �k2

0 0 1 0

2
6664

3
7775

f1

f2

g1

g2

8>>><
>>>:

9>>>=
>>>;

ð22Þ
or
u0 ¼ Hsu ð23Þ

where u = {fT, gT}T is the state vector. In the symplectic space, the solution can be represented by
uðhÞ ¼
X

Anegnh ð24Þ
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and the eigensolutions constitute a complete space of solutions where gn is the eigenvalue and An is a con-
stant vector. It is noticed that the boundary conditions of solution (24) are given on h = 0 and h = 2p since
the cylindrical shell is a closed shell. The boundary conditions and the continuous conditions are expressed
as
f1jh¼0 ¼ f1jh¼2p; f 2jh¼0 ¼ f2jh¼2p; g1jh¼0 ¼ g1jh¼2p; g2jh¼0 ¼ g2jh¼2p ð25Þ

or
uð0Þ ¼ uð2pÞ ð26Þ

In other words, the eigenvalue must satisfy the equation gn = ni (n = 0, ± 1, ± 2, . . .). In sub-symplectic sys-
tem, the zero eigenvalue solutions and the non-zero eigenvalue solutions have an important physical mean-
ing. The zero eigenvalue solutions (n = 0) are related to axisymmetric buckling modes whereas the non-zero
eigenvalue solutions (n 5 0) denote non-axisymmetric buckling.

It can be easily verified that solutions (17) and the function in solution (24) are related by
wðX ; hÞ ¼
X

m

X
n

BmnekmX einh �
X

n

�wðN cr; n;X Þeinh ð27Þ
where Bmn is a constant vector and k is the load function Ncr. The critical load Ncr can be very large which
corresponds to km having a large m, namely k = km (m = 0, 1, 2, . . .). Substituting solution (27) into Eq. (15)
yields a characteristic polynomial as follows:
�k �1 0 0

�n2 �k 0 1

c 0 �k n2

0 �N cr 1 �k

���������

���������
¼ 0 ð28Þ
or
k4 þ ðN cr � 2n2Þk2 þ cþ n4 ¼ 0 ð29Þ

where the components of the constant vector are expressed as
Bð1Þmn ¼ bmn; Bð2Þmn ¼ �kbmn; Bð3Þmn ¼ ½ðkn2 � k3Þ þ N crk�bmn; Bð4Þmn ¼ ðn2 � k2Þbmn ð30Þ

Since there are four roots for eigenequation (29), the general eigensolution should be
�q1 ¼ b1n cosða1X Þ þ b2n sinða1X Þ þ b3n cosða2X Þ þ b4n sinða2X Þ

�q2 ¼ b1na1 sinða1X Þ � b2na1 cosða1X Þ þ b3na2 sinða2X Þ � b4na2 cosða2X Þ

�p1 ¼ b1n½a1ðn2 þ N crÞ � a3
1� sinða1X Þ � b2n½a1ðn2 þ N crÞ � a3

1� cosða1X Þ

þb3n½a2ðn2 þ N crÞ � a3
2� sinða2X Þ � b4n½a2ðn2 þ N crÞ � a3

2� cosða2X Þ

�p2 ¼ b1nða2
1 þ n2Þ cosða1X Þ þ b2nða2

1 þ n2Þ sinða1X Þ

þb3nða2
2 þ n2Þ cosða2X Þ þ b4nða2

2 þ n2Þ sinða2X Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð31Þ
where
a1 ¼ N cr

2
� n2 þ N cr

2

	 
2 � n2N cr � c
h i1=2

� �1=2

a2 ¼ N cr

2
� n2 � N cr

2

	 
2 � n2N cr � c
h i1=2

� �1=2

8>>><
>>>:

ð32Þ
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The solution (31) can be represented by
�wðN cr; n;X Þ ¼ AðN cr; n;X Þb ð33Þ

where the undetermined vector is b = {b1n, b2n, b3n, b4n}T. The solution (31) or (33) implies one restriction,
i.e. each and every wave length of the buckling mode along the centroidal axis is limited. To explain the
phenomena, we suppose the wave front is Xe = T (or xe = ct), Ncr/2 � n2 > [n4 + c]1/2. The wave length
has m-order and it depicts wrinkling of the buckling mode along the centroidal axis. Therefore, a1 T 6 2mp
and a2 T 6 2mp. The result is a1a2 T2

6 4m2p2, namely
T 6

ffiffiffi
2
p

mp

½cþ n4�1=4
or t 6

ffiffiffi
2
p

mpr

c½cþ n4�1=4
ð34Þ
In other words, the order of buckling mode can only be less than m-order, and it is not dependent on the
load but rather dependent on the parameters of material and structure.
6. The continuous conditions of end boundary and wave front

The end boundary conditions of the shell can be derived from Eq. (13). Suppose X = X0 be any end of
the shell, we have
q1 ¼ 0 or p1 ¼ 0 ðX ¼ X 0Þ
q2 ¼ 0 or p2 � ð1� lÞo2

hq1 ¼ 0 ðX ¼ X 0Þ

�
ð35Þ
The typical end conditions are fixed, simple supports and free supports. These conditions can be expressed,
respectively, as
q1 ¼ 0; q2 ¼ 0 ðX ¼ X 0Þ ð36Þ

q1 ¼ 0; p2 � ð1� lÞo2
hq1 ¼ 0 ðX ¼ X 0Þ ð37Þ

p1 ¼ 0; p2 � ð1� lÞo2
hq1 ¼ 0 ðX ¼ X 0Þ ð38Þ
The equipollent boundary conditions of ends of the shell in Eqs. (36)–(38) can be rewritten as, respectively,
�q1 ¼ 0; �q2 ¼ 0 ðX ¼ X 0Þ ð39Þ

�q1 ¼ 0; �p2 ¼ 0 ðX ¼ X 0Þ ð40Þ

�p1 ¼ 0; �p2 þ ð1� lÞn2�q1 ¼ 0 ðX ¼ X 0Þ ð41Þ

If the wave does not reflect, the region T < X 6 L (ct < x 6 l) is non-disturbed and the internal force and

displacement are equal to zero. Therefore the continuous conditions of the wave front should be
�q1 ¼ 0; �q2 ¼ 0 ðX ¼ T Þ ð42Þ

Otherwise, the shell is divided into two regions after the wave has reflected. From Eq. (6), the axial internal
forces are different in both regions and the displacements can be non-zero. In this case, two solutions exist in
the two regions and they should satisfy the continuous conditions on the wave front of reflection (X = Xr).
Let solutions (27) be, respectively, w(1)(Ncr, X, h) and wð2ÞðN �cr;X ; hÞ, or �w

ð1ÞðN cr; n;X Þ and �w
ð2ÞðN �cr; k;X Þ.

Owing to the continuous conditions at X = Xr along coordinate h, the result obtained is such that k must
be equal to n from solutions (27). The continuous conditions about coordinate X can be reduced to
�qð1Þ1 ¼ �qð2Þ1 ; �qð1Þ2 ¼ �qð2Þ2 ; �pð1Þ1 ¼ �pð2Þ1 ; �pð1Þ2 ¼ �pð2Þ2 ðX ¼ X rÞ ð43Þ
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or
�w
ð1ÞðN cr; n;X rÞ ¼ �w

ð2ÞðN �cr; n;X rÞ ð44Þ

Eqs. (43) or (44) indicate continuous displacements, bending angles, effective shears and moments,
respectively.
7. The bifurcated condition of buckling

In this section, the bifurcated conditions of buckling are discussed in two parts, i.e. reflection of wave
and non-reflection of wave. The case of fixed end supports with wave reflection is discussed in detail.

First, we investigate the case with stress wave propagating along the shell. A step load impacts one end
of the shell at the moment when the propagating wave has not reached the other end. In this case, the solu-
tion (31) or (33) should satisfy boundary conditions (39) and continuous conditions of the wave front (42).
The linear homogeneous equations for the undetermined constants are obtained as
Ak1ðN ; n; 0Þ Ak2ðN ; n; 0Þ Ak3ðN ; n; 0Þ Ak4ðN ; n; 0Þ
Aj1ðN ; n; 0Þ Aj2ðN ; n; 0Þ Aj3ðN ; n; 0Þ Aj4ðN ; n; 0Þ

A11ðN ; n;X eÞ A12ðN ; n;X eÞ A13ðN ; n;X eÞ A14ðN ; n;X eÞ
A21ðN ; n;X eÞ A22ðN ; n;X eÞ A23ðN ; n;X eÞ A24ðN ; n;X eÞ

2
6664

3
7775b ¼ 0 ð45Þ
where A5k(Ncr, n, X) � A4k(Ncr, n, X) + (1 � l)n2A1k(Ncr, n, X) (k = 1, 2, 3, 4). In Eq. (45), k = 1, j = 2;
k = 1, j = 3 and k = 3, j = 5 represent the cases of fixed, simple supports and free supports on the impact
end, respectively.

Next, we investigate the case after the wave has reflected from the other end of the shell. In this case, the
shell is partitioned into two regions. Let �w

ð1ÞðN cr; n;X Þ � Að1ÞðX Þbð1Þ and �w
ð2Þð2N cr; n;X Þ � Að2ÞðX Þbð2Þ be

solutions in the two regions, respectively. The former satisfy one boundary condition (39) at X0 = 0 and
the latter satisfy the other boundary condition (39) at X0 = L. Both of them satisfy the continuous condi-
tions (44) at X = Xr. The equations can be combined into
Að1Þk1 ð0Þ Að1Þk2 ð0Þ Að1Þk3 ð0Þ Að1Þk4 ð0Þ 0 0 0 0

Að1Þj1 ð0Þ Að1Þj2 ð0Þ Að1Þj3 ð0Þ Að1Þj4 ð0Þ 0 0 0 0
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bð1Þ

bð2Þ

( )
¼ 0

ð46Þ

Let Eq. (45) and Eq. (46) be rewritten uniformly as
Bb ¼ 0 ð47Þ

If the solution (31) or (33) is zero at all time, buckling of the shell does not occur. Otherwise, the con-

dition that Eq. (31) has non-zero solution is transformed into Eq. (47), i.e., at the bifurcation point, the
determinant of the coefficient matrix is zero, or
Bj j ¼ 0: ð48Þ
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From the bifurcation condition (48), the critical buckling load Ncr can be determined. Furthermore, the
corresponding mode of buckling at a specific time can be solved from Eqs. (47), (31) and (27). It should
be pointed that buckling modes are complex expressions. Both real and imaginary parts of the expressions
are solutions of the problem. The discrepancy between them can be represented by an angle phase shift.
8. Numerical results of critical buckling load and modes of the buckling

For simplicity, let R = 1, L = 5, h/r = 0.05, Xe = T and the critical buckling load Ncr = Nr2/D. Eqs. (36)
or (39) are considered as the ends boundary condition and others are similar. When the end of shell is sub-
jected to a step impact load, the longitudinal wave starts to propagate with wave speed c determined by the
material and structure. Furthermore, let Xe = T be the position of propagation of wave.

When buckling of shell occurs at a specific time, the critical buckling loads Ncr can be determined by the
bifurcation condition (48). At that time, the impact load Ncr causes the shell to buckle. Figs. 1–3 illustrate
curves of critical buckling load with wave propagation time. In these figures, it can be observed that the
critical loads decrease with time. Moreover, Xe = 5 is a point that the wave reflects and the critical buckling
loads decrease obviously after the reflection of wave. Let n be defined as the order in Eq. (27) and it shows
the stage of non-axisymmetric buckling. In fact, from Eq. (27) n represents the number of corrugations for
circumferential buckling. For a fixed n, the critical load has multi-branches which are marked as the first
branch with m = 1, the second branch with m = 2, and the like. The branch indicates the number of cor-
rugations for axial buckling. Fig. 1 shows the first 10 orders of critical load curves. The buckling load in-
creases with increasing n. The critical loads of axisymmetric buckling (n = 0) and non-axisymmetric
buckling (n = 2) are displayed for the first 10 branches of critical load curves in Figs. 2 and 3, respectively.
For each branch, the critical load is greater for higher order modes. This phenomenon shows that non-
axisymmetric critical load is higher than axisymmetric one and this phenomenon is in agreement with
Fig. 1. The first 10 orders of critical buckling loads with time of wave propagation.



Fig. 2. The first 10 branches of critical buckling loads with time of wave propagation (n = 0).

Fig. 3. The first 10 branches of critical buckling loads (n = 2).
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experiments in the middle thickness shell that is impacted by the axial load (Wang et al., 1983; Chen et al.,
1992). This fact implies axisymmetric buckling occurs more easily as compared to non-axisymmetric buck-
ling. It is noteworthy that the curves of critical loads of odd branches (dashed lines) coalesces with one-le-
vel-higher even branches (continuous lines) as observed in Figs. 2 and 3. The phenomenon explains that



Fig. 4. Six circumferential buckling modes (n = 0, 1, 2, 3, 4, 5; Xe = T = 3.5).
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half wave length of buckling mode occurs in even multiples only and buckling takes place in a short time.
Besides, dot lines, in Figs. 1–3, are stated critical load. It shows that the stated critical loads are lower than
dynamic ones before wave reflection. After wave reflection (T > 5 in figures), the axial force in shell is 2N

but N in the reflection region so as to some dynamic critical loads can be lower than the stated critical load
since the axial impact load is step one. If the wave reflects to the impacted end, the axial force in whole shell
is 2N and it can be imagined that the stated critical load reduces to half of it. In this case, the dynamic buck-
ling is the easier than stated one. The numerical result shows that the dynamic critical load is the greater
than half of the stated critical load before second reflection of the wave on the impacted end.

After solving the critical buckling load Ncr by bifurcation condition (48), the corresponding buckling
mode can be obtained from Eqs. (47), (31) and (27). Assuming the top of shell is the wave reflection end
while the other end is subjected to an impact load, Fig. 4 shows six buckling modes (n = 0, 1, 2, 3, 4, 5;
Xe = T = 3.5) with critical loads corresponding to Fig. 1. The order of circumferential buckling is given
by n where n = 0 represents axisymmetric buckling and n 5 0 denotes non-axisymmetric modes. The level
of complexity of non-axisymmetry increases with increasing n.

It is also noticed from Figs. 1–3 that there exist many inflexions for the critical load curves. In reality, the
inflexions interrelate with the limit (34) of wrinkle of buckling mode along the centroidal axis. Fig. 5 shows
this character (the lowest branch curve in Fig. 3 is selected as the critical load and critical time
T = 0.5, 0.8, 1.2, 1.8, 3.0, 4.5, respectively) where the buckling modes for loads between two inflexions on
one curve, or there are multi-branches on one curve of critical load.
Fig. 5. Multi-branches of buckling modes.



Fig. 6. Buckling modes after reflection of wave (n = 0, 1, 2, 3, 4, 5; T = 6).

Fig. 7. Various buckling modes with time of reflection.
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Because wave reflects from the impact end to the reflection end, the buckling modes of shell have special
forms. The buckling modes after reflection of wave are shown in Figs. 6 and 7. Fig. 6 presents six buckling
modes (n = 0, 1, 2, 3, 4, 5; T = 6) with critical loads correspond to Fig. 1. In this figure, it is evident that
buckling shapes are extrusive round the reflection end of the shell. Corresponding to the critical loads in
Fig. 3, Fig. 7 displays various buckling modes of reflection with time (n = 2; T = 5.6, 6.0, 6.7, 7.3, 8.0,
respectively) where the leftmost mode in the figure refers to the particular moment the wave just arrives
at the reflection end. Buckling at the reflection end takes place easily as illustrated in Figs. 6 and 7. This
phenomenon agrees with experiments where buckling may occur first at the impact end for high impact
load, or otherwise buckling may occur at the reflection end.
9. Conclusion

It has been demonstrated that dynamic buckling of finite cylindrical shells is a local phenomenon at some
positions in the first instance and it extends in correlation with propagation and reflection of waves. The
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primary factors influencing buckling are the impact loads and the boundary condition. The boundary con-
dition is not only an expression of displacements but it forms a problem of mixed boundary conditions
involving geometric and natural conditions. An effective Hamiltonian system has been introduced to the
dynamic buckling of structures without Lagrange formulation. A symplectic space has also been introduced
where the primary and canonical variables incidentally describe the mixed problem. Employing a sub-
symplectic system, the non-axisymmetric problem can be precisely reduced to a problem of eigenvalues
and eigensolutions where the eigenvalues denote the critical buckling loads and eigensolutions denote
the buckling modes. Significant physical implications of dynamic buckling of shells have been illustrated
and discussed.
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