Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.RECT® SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 43 (2006) 3905-3919

Dynamic buckling of cylindrical shells subject to an axial
impact in a symplectic system

Xinsheng Xu **, Yuan Ma , C.W. Lim °, Hongjie Chu *

4 State Key Laboratory of Structure Analysis of Industrial Equipment and Department of Engineering Mechanics,
Dalian University of Technology, Dalian 116024, PR China
® Department of Building and Construction, City University of Hong Kong, Hong Kong

Received 3 March 2005
Available online 12 April 2005

Abstract

This paper discusses the dynamic pre-buckling of finite cylindrical shells in the propagation and reflection of axial
stress waves. By introducing the Hamiltonian system into dynamic buckling of structures, the problem can be described
mathematically in a symplectic space. The solutions of Hamiltonian dual equations shown in canonical variables are
obtained. The problem is reduced to the determination of eigenvalues and eigensolutions, with the former indicating
critical buckling loads and the latter buckling modes. Numerical example presented shows phenomena of axisymmetric
and non-axisymmetric dynamic buckling subject to impacts of axial load.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

There has been intensive attention on dynamic buckling of structures as compared to static buckling
problems because the former has significant engineering characteristics as well as important design impli-
cations. Dynamics buckling is local and it involves an extension process. The local phenomena have rela-
tions with propagation of stress waves proven by experiments. Therefore, it is necessary and far-reaching to
discuss dynamic buckling of structures with respect to propagation and reflection of waves.
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Nomenclature

E Young’s modulus
u Poisson’s ratio

0 material density

h,r,[ thickness, middle surface radius and length of cylindrical shell, respectively
(r, 0, x) circular cylindrical coordinate

u x-axial, centroidal axial, displacement of a shell
w lateral displacement
v circumferential displacement

D, K D=ER/[12(1 — y»)]and K = Eh/(1 — 1), the shell felxural rigidity and stiffness
&, €; ~ membrane strains and shear strains in the neutral surface
Ki, T bending and torsional strains in the neutral surface

N;, N;; internal stresses and shear stresses
M;, M; bending and torsional moments

c ¢ =[E/p(1 — u»)]"?, wave speed
N axial compressive load

L Lagrange function

H Hamiltonian function

q,p mutually dual vectors

H Hamiltonian operator matrix

For more than 40 years, dynamic buckling of cylindrical shells subject to axial impact has been of inten-
sive study. Coppa (1960) discovered in an experiment that the mode of dynamic buckling is similar to that
of static buckling. Through experiments, Wang et al. (1983) reported that axisymmetric and non-axisym-
metric buckling modes depend upon the axial impact velocity and the thickness of cylindrical shells. They
put forward the first and second critical velocities in allusion to two modes upwards in the middle thickness
shell. Ma et al. (2003) further discussed the second critical velocities. Besides, the effect of stress wave was
noticed in experiments (Chen et al., 1992) which explored the connection between axial stress waves and
buckling phenomena. Theoretical methods and numerical results in agreement with physical phenomenon
and experiments have been developed. Xu et al. (1995, 1997a) discussed dynamics of axisymmetric and non-
axisymmetric buckling, respectively, in which the propagation of axial stress wave was considered using the
method of modal functions. With the aid of the modal method, Jamal et al. (2004), Abdullah et al. (2003)
and Sofiyev and Aksogan (2004) recently investigated some buckling problems of cylindrical shells. How-
ever, the method requires expansion of modal functions to solve partial differentiations, in which the space
of solutions is not complete. With respect to numerical methods, a number of researchers discussed buck-
ling of cylindrical shells by using finite element method Choong and Ramm (1998), mixed finite elements
(Uchiyama and Yamada, 2003), p-element method (Lim and Ma, 2003; Lim et al., 2003), the Ritz method
(Tian et al., 1999) and asymptotic-numerical method (Fettahli and Steele, 1974; Tovstik and Smirnov, 2001;
Boutyour et al., 2004). Karagiozova and Jones (2001, 2002) considered the influence of stress waves by
employing the finite element method and analyzed dynamic progressive buckling from in the viewpoint
of the authors wave propagation resulting from an axial impact. Karagiozova and Alves (2004a,b) studied
buckling problem via the combination of theoretical analysis, experiment, numerical analysis and observa-
tion. These works revealed distinctly some phenomenon and behaviors of bucklings of cylindrical shell. In
various investigations, specific attention has been paid to the fact that the buckling load of thin cylindrical
shell under axial compression depends significantly on the initial imperfection of the specimen. Because of



X. Xu et al. | International Journal of Solids and Structures 43 (2006) 3905-3919 3907

imperfection sensitivity, modes and extended process of post-buckling of shells cannot be ensured. For this
problem, quantitative analyses have been published by scholars, for example Florence and Goodier (1968),
Arbocz and Hol (1991), Hambly and Calladine (1996), Jamal et al. (1999) and Lancaster et al. (2000). The
supposition of initial imperfections should be appropriate or else results cannot be convincing. In the
author’s viewpoint, it should be reasonable that pre-buckling modes are considered as initial imperfections
of post-buckling problems.

The methods mentioned above belong to the Lagrange formulation which is difficult for solving higher
order partial differentiations. By introducing Hamiltonian formulation into theory of elasticity, the method
of separation of variables has been generalized. Zhong (2004) investigated the plane problem of isotropic
elasticity with the aid of Hamiltonian system. Steele and Kim (1992) established a modified mixed varia-
tional principle and the state-vector equation, i.e. the Hamiltonian canonical equation, for elastic bodies
and shells with spatial variables as the independent variables. In the Hamiltonian system, there exists an
adjoint symplectic ortho-normalization relationship with the corresponding expansion theorem among
the eigenfunction-vectors in elasticity (Zhong, 2004; Xu et al., 1997b). From this symplectic system, com-
plete solutions can be obtained.

In this paper, the Hamiltonian formulation for dynamic buckling of shells is investigated. In the prop-
agation of longitudinal waves resulted from axial impact loads, the fundamental equations or the dual
equations and the corresponding boundary conditions are obtained. In the symplectic space, the critical
buckling loads and modes are described by a direct method with the aid of a complete space of solutions.

2. The fundamental problem

Consider an elastic cylindrical shell with thickness /2, middle surface radius r, length /, Young’s modulus
E and Poisson’s ratio u. The shell is subjected to an axial impact load at the end (x = 0). A circular cylin-
drical coordinate (r, 0, x) is adopted such that the x-axis is along the centroidal axis and (w, v, u) are the
corresponding displacements. The constitutive relations are expressed as

N, = K(e& + uep)
No = K(eo + )
N =K(1 — p)ey/2
M, = D(k, + i)
My = D(kg + pxc,)
M,y =D(1— s

where D = EI’/[12(1 — p*)]and K = Eh/(1 — u%). The membrane strain components and curvature compo-
nents in the neutral surface are

Ou o — *w
&= o T ol
wow 1 o*w
=17 - 2
&p " 30 , Ko }"2 602 ()
10 0 2
8);0:_6_;"'@_1] T:_la—w
r X r Ox00

The extension potential energy density, bending potential energy density, work of external load and ki-
netic energy of the shell subjected to an axial impact load are denoted by I1,, II,, II,, and II,, respectively.
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The Lagrange function can be shown as
H:H8+H1c+Hw_Ht

1 1— 1 1 0
=§K<sf+8§+2u8x89+7ﬂ8f9)+§D(K§+K§+2wcx;<9+2(l— Ik; )——l// — = h(g;)

(3)
where /. = — Ow/0x is the bending angle, p the material density and N an axial compressive load. Consider
internal forces uniformity along the circumferential direction, the Lagrange function becomes

Ou ph (Ou K ,
L= 2(6x> 2(61) oY

DY@\ L@ 28w (- [owdw @\ v
2 | \ o2  \ 00> 2 ox2 op? r? ox2 pp? 0x00 2 \ ox
Employing the principle of minimum potential energy, the governing equations expressed in terms of dis-

placements can be obtained. The displacement method belongs to the Lagrange formulation or it is a La-
grange system.

3. Propagation and reflection of longitudinal stress wave

It is noticed that the longitudinal wave equation can be obtained from Eq. (4) via a variational approach.
The process results in decoupling of other equations. The equation is
o'u 0
D S 5
o “a ®)
where the wave speed is ¢ = [E/p(1 — ,uz)]l/ 2. The axial force can be confirmed by wave propagation base on
wave equation and the end conditions, with an impact at x = 0 and with no impact at x = /. The boundary
condition is about longitudinal displacement u. It implies a temporal function of force, or N = N(x, ?). In
this case, we may assume a stepped axial impact load N(0, {) = —N H(t), where N is a constant and H() is
a step function: H(t) =1if ¢t > 0 and H(¢) = 0 if 1 <0. When an impact at the end of shell takes place, the
longitudinal stress wave begins to propagate from the end and the elastic wave front is x. = ct. After the
wave arrives at the other end, the longitudinal wave reflects. Here, we assume the reflection end is a clamped
support, or u(/, 1) =0, and only the first reflection (¢ <2//c) is considered. For an ideal, perfect shell the
axial internal force for propagation and reflection of wave can be expressed as (Xu et al., 1997a)
—N Oéxgxe,tgl/c
0 e <x < < /e
N, = . / )
—N O<x<xr,t>l/c
2N x;<x<t>1/c

where the reflection of wave front is x, = 2/ — ct.
4. Hamiltonian system and the adjoint symplectic ortho-normalization
Consider an elastic shell with radius r as the character length measured from the shell middle surface. We

adopt the dimensionless parameters X = x/r, W = w/r, L = I/r, T = tc/r and y = (r/h)*/12, Nex = Ni*/D. Let
an over-dot denotes differentiation with respect to X, namely ( - ) = (6/0X)( ) in which the X-coordinate can
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be taken in analogy to the time coordinate, and ( )’ = (8/00)( ) = dy( ). The dimensionless Lagrange func-
tion correlated with radial displacement W can be simplified as

) 1 . . . iy Ne .
LOW) = ZW2 45 {7+ (W) 200" — (1= i w" = ()]} = 5= (07 ) (7
The dual variable of the displacement W can be obtained as
oL - N -
= = —(W4W') =N W 8
pr =< = (i 17 (8

Let bending angle . be regarded as the fundamental variables and introducing q = { W, y.}* = {q1, g2} ",
the Lagrange function can be rewritten as

'y 1 . . . Ncr
Lgy.42) =541 +5{(~ +4)) = (1 = wlarg) = @)} -5 )
The Hamiltonian formulation requires the dual vector p as
p 8L [ —(41+4y) —Nuq
D> q —(=¢, +q7)

The physical components of the dual vector p consists of the dimensionless effective shear and moment, or

r ow oW ow
=50 om0 == (G ) e ()
_LMX+M9__<62W+62W)
2= 1w T\ T

The mutual dual vectors qand p are regarded as independent variables. Based on these dual vectors, the
Hamiltonian function can be introduced as

. 1 v Y 1
H(q,p) =P'4—L(Q,P) = 575 — P12 + 224} — 541 +5Nes (12)

Substituting Eq. (12) into the variational equation
5/[pTc'1—H(q,p)}d9=0 (13)

then the fundamental equations, or the dual equations, of the Hamiltonian system can be obtained via inte-
gration by parts as

i= OH
)
o SH (14)
oq
Rewriting Eq. (14) in matrix-vector form, one has
a 0o -1 0 0 q
9> _ 8(29 0 0 1 q> (15)
b v 0 0 _812) P
P> 0 —N, 1 0 J2

It can be proven that Eq. (15) indicate directly equilibrium of forces and moments.
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Let the state vector be = {q", p"}", Eq. (15) can be rewritten as

Y = Hy. (16)
The solution of Eq. (16) can be represented by

YX,0) =D v, (0)e (17)
where ¥, and /,, are unknown eigenfunction and eigenvalue, respectively, of the eigenproblem

Hl//m = }”mlpm (18)

It can be proven that (i) H is Hamiltonian operator matrix; (ii) the Hamiltonian eigenproblem (18) has an
adjoint symplectic orthogonality relationship between its eigenvectors; (iii) if 4, is an eigenvalue, —4,, is
also an eigenvalue; (iv) the space of eigenvectors, which is formulated by eigensolutions, is complete;
and (v) any state vector Y can always be expanded by a linear combination of the eigen-function-vectors.
The proof can be referred to Zhong (2004) and Xu et al. (1997b).

5. The eigenvalue solutions and the sub-symplectic system

Consider the eigenvalue problem which is separable into zero and non-zero eigenvalue solutions. In par-
ticular, zero is one of the eigenvalues, or 4 = 0. In this case Eq. (16) becomes Hy = 0. The solution is evi-
dently a form of the buckling in only the circumferential direction, which is independent of the longitudinal
coordinate, and it is not within the scope of this paper. For the problem of non-zero eigenvalue (41 # 0), a
sub-symplectic system is introduced. The Lagrange function (7) can be expressed as

MWU:%@+¢“—MMSWQ+%KW62+2ﬁWWW—a—uMﬁWW”—UVﬁ} (19)

where coordinate 0 is taken in analogy to the time coordinate. Introducing f = { W, ¢} = (£}, f>} " where ¢
= — W' and similar to Eqs. (8)—(10), the dual variables are obtained as

g\ L[~ Rh y
SRV I B £, 2

The dual vector g denotes shear and moment. The other Hamiltonian function is

1 _ 1
H(f,g) =g'f — L(f.g) =58 — q1fr + X'afi =5 (7 = Na)} (21)
The Hamiltonian dual equations can be written as
f 0 -1 0 0 N
4 2 0 0 1 :
AL A NPEE (22)
gll Y= A Ncr 0 0 -1 81
g5 0 0 1 0 2
or
¢ =Hp (23)

where ¢ = {fT, g"}T is the state vector. In the symplectic space, the solution can be represented by

P(0) => A’ (24)
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and the eigensolutions constitute a complete space of solutions where 7, is the eigenvalue and 4,, is a con-
stant vector. It is noticed that the boundary conditions of solution (24) are given on 6 = 0 and 0 = 2 since
the cylindrical shell is a closed shell. The boundary conditions and the continuous conditions are expressed
as

fl|0:o :f1|0:2m f2|0:0 :f2|0:2m g1|0:0 = g1|0:2m gz‘a:o = g2|0:2n: (25)

¢(0) = ¢(2m) (26)

In other words, the eigenvalue must satisfy the equation n, =ni(n =0, + 1, £ 2, ...). In sub-symplectic sys-
tem, the zero eigenvalue solutions and the non-zero eigenvalue solutions have an important physical mean-
ing. The zero eigenvalue solutions (n = 0) are related to axisymmetric buckling modes whereas the non-zero
eigenvalue solutions (n # 0) denote non-axisymmetric buckling.

It can be easily verified that solutions (17) and the function in solution (24) are related by

YX,0) =D Bue e = §(Ne,n, X )& (27)

where B,,, is a constant vector and / is the load function N.,. The critical load N, can be very large which
corresponds to /,, having a large m, namely A = /,,(m =0, 1, 2, ...). Substituting solution (27) into Eq. (15)
yields a characteristic polynomial as follows:

-2 =1 0 0

- -1 0 1

p 0 -1 n =0 (28)
0 —Ne 1 =2
or
I (Ng =207 +9+n* =0 (29)

where the components of the constant vector are expressed as

BY —=p,.. BY = _)b,.. B =[(n?—2)+ Nellbp, BY = n>—2")b, (30)

mn mn

Since there are four roots for eigenequation (29), the general eigensolution should be

g, = by, cos(o1X) + by, sin(oy X ) + b3, cos(0aX) + by, sin(opX)
G, = b1,0q sin(a X)) — ba,oy cos(oX) + b0 sin(opX) — by, cos(oX)
Dy = bi[o (n* + No) — o5 sin(o X ) — b0y (n* + Nep) — o] cos(o.X) 1)
+b3, [0 (0 + Nop) — 03] sin(00X ) — ba, [0 (n* + Ne) — 3] cos(aX)
D> = b1,(a3 + n*) cos(o X) + by, (a2 + n*) sin(o.X)
+b3,(03 4 1*) co8(02X) + ba, (03 + n?) sin(onX)
where
Ner 2 Ner) 2 2 12 /2
n = {%—” + (%) - Na — ] }
L NI 12y 172 (32)
w = {f—n - [(f) —n Ncr—y} }
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The solution (31) can be represented by

W(Neg,n,X) = A(Ner, n, X)b (33)
where the undetermined vector is b = {by,,, bon, b3, ban} ' The solution (31) or (33) implies one restriction,
1.e. each and every wave length of the buckling mode along the centroidal axis is limited. To explain the
phenomena, we suppose the wave front is X. = T (or X = ct), Net/2 — 0> > [n* + y]l/ 2. The wave length
has m-order and it depicts wrinkling of the buckling mode along the centroidal axis. Therefore, oy 7' < 2mmn
and o, T < 2mm. The result is a0 77 < 4m’n®, namely

ﬁmn < \/im r

or ¢ ——
" Sy

r<
Tyt

(34)

In other words, the order of buckling mode can only be less than m-order, and it is not dependent on the
load but rather dependent on the parameters of material and structure.

6. The continuous conditions of end boundary and wave front

The end boundary conditions of the shell can be derived from Eq. (13). Suppose X = X, be any end of
the shell, we have

o0 o 0= (X = X0) 5
;=0 or p,—(1-wdg =0 (X=X,

The typical end conditions are fixed, simple supports and free supports. These conditions can be expressed,
respectively, as

9:1=0; ¢q,=0 (X = X)) (36)
=0 p—-(1-pdg =0 (X=X, (37)
=0 py—(1-pg; =0 (X=X (38)
The equipollent boundary conditions of ends of the shell in Egs. (36)—(38) can be rewritten as, respectively,
9,=0; g,=0 (X = X)) (39)
g.=0; p,=0 (X = X)) (40)
=0 pt(1-pr’g =0 (X=X (41)

If the wave does not reflect, the region 7' < X < L (¢t < x < /) is non-disturbed and the internal force and
displacement are equal to zero. Therefore the continuous conditions of the wave front should be

:=0; g,=0 (X:T) (42)

Otherwise, the shell is divided into two regions after the wave has reflected. From Eq. (6), the axial internal
forces are different in both regions and the displacements can be non-zero. In this case, two solutions exist in
the two regions and they should satisfy the continuous conditions on the wave front of reflection (X = X,.).
Let solutions (27) be, respectively, ¥'"(Ne, X, 0) and @ (N7, X,0), or " (Ne,n,X) and y* (N:, k, X).

Owing to the continuous conditions at X = X, along coordinate 0, the result obtained is such that k must
be equal to n from solutions (27). The continuous conditions about coordinate X can be reduced to

_ _ —(1 —(2 —(1 —(2
7 =7 =g, p=p"; B =p" (X=X (43)
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or
U (Neron, X,) = 4P (N2, X,) (44)

Eqgs. (43) or (44) indicate continuous displacements, bending angles, effective shears and moments,
respectively.

7. The bifurcated condition of buckling

In this section, the bifurcated conditions of buckling are discussed in two parts, i.e. reflection of wave
and non-reflection of wave. The case of fixed end supports with wave reflection is discussed in detail.

First, we investigate the case with stress wave propagating along the shell. A step load impacts one end
of the shell at the moment when the propagating wave has not reached the other end. In this case, the solu-
tion (31) or (33) should satisfy boundary conditions (39) and continuous conditions of the wave front (42).
The linear homogeneous equations for the undetermined constants are obtained as

Akl(N,n,O) Akz(N7Vl70) Ak3(N,n,0) Ak4(N,I’l,0)
Aj](N,n,O) Ajz(N,l’l,O) Aj3(N,7’l,0) Aj4(N,l/l70)
All(NanaXe) AIZ(N7n7Xe) Al3(N;n;Xe) Al4(NanaXe)
An(N,n,X,.) An(N,n,X.) An(N,nX.,) Au(N,nX.)
where Asi(Nep, 1, X) = Agg(Ner, 0, X) + (1 — ,u)nzAlk(Ncr, n,X) (k=1,2,3,4). In Eq. (45), k=1, j=2;
k=1,j=3 and k=3, j =5 represent the cases of fixed, simple supports and free supports on the impact
end, respectively.
Next, we investigate the case after the wave has reflected from the other e_ngl of the shell. In this case, the
shell is partitioned into two regions. Let xp( )(Ncr,n,X) =AY (x)p" and xp( >(2Ncr,n,X) =AP(X)b? be
solutions in the two regions, respectively. The former satisfy one boundary condition (39) at X, =0 and

the latter satisfy the other boundary condition (39) at Xy, = L. Both of them satisfy the continuous condi-
tions (44) at X = X,. The equations can be combined into

b=0 (45)

[ 4(0)  450)  40) 40 0 0 0 0
AP©0) 450 4P 40 0 0 0 0
AV AR A 4l 4R 4P A3 AR (x)
AV AR Al AN 4R AP AR(x) 45 {b<'>}:0
AV, AP AR 4l ) AR AR Q) AR | b
AP, 4y AR Afx) AP Agx,) afx) AR
0 0 0 0 4w 43w 47w 47w
L0 0 0 0 43w 4AFw) 4Rw)  4Z@) ]

(46)

Let Eq. (45) and Eq. (46) be rewritten uniformly as
Bb=0 (47)
If the solution (31) or (33) is zero at all time, buckling of the shell does not occur. Otherwise, the con-

dition that Eq. (31) has non-zero solution is transformed into Eq. (47), i.e., at the bifurcation point, the
determinant of the coefficient matrix is zero, or

B| = 0. (48)
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From the bifurcation condition (48), the critical buckling load N, can be determined. Furthermore, the
corresponding mode of buckling at a specific time can be solved from Egs. (47), (31) and (27). It should
be pointed that buckling modes are complex expressions. Both real and imaginary parts of the expressions
are solutions of the problem. The discrepancy between them can be represented by an angle phase shift.

8. Numerical results of critical buckling load and modes of the buckling

For simplicity, let R=1, L =5, h/r = 0.05, X, = T and the critical buckling load N., = Nr*/D. Egs. (36)
or (39) are considered as the ends boundary condition and others are similar. When the end of shell is sub-
jected to a step impact load, the longitudinal wave starts to propagate with wave speed ¢ determined by the
material and structure. Furthermore, let X, = 7T be the position of propagation of wave.

When buckling of shell occurs at a specific time, the critical buckling loads N, can be determined by the
bifurcation condition (48). At that time, the impact load N, causes the shell to buckle. Figs. 1-3 illustrate
curves of critical buckling load with wave propagation time. In these figures, it can be observed that the
critical loads decrease with time. Moreover, X, = 5 is a point that the wave reflects and the critical buckling
loads decrease obviously after the reflection of wave. Let n be defined as the order in Eq. (27) and it shows
the stage of non-axisymmetric buckling. In fact, from Eq. (27) n represents the number of corrugations for
circumferential buckling. For a fixed #n, the critical load has multi-branches which are marked as the first
branch with m = 1, the second branch with m = 2, and the like. The branch indicates the number of cor-
rugations for axial buckling. Fig. 1 shows the first 10 orders of critical load curves. The buckling load in-
creases with increasing n. The critical loads of axisymmetric buckling (n =0) and non-axisymmetric
buckling (n = 2) are displayed for the first 10 branches of critical load curves in Figs. 2 and 3, respectively.
For each branch, the critical load is greater for higher order modes. This phenomenon shows that non-
axisymmetric critical load is higher than axisymmetric one and this phenomenon is in agreement with

450

400

350

200 -

150 -

Critical buckling load (N¢r)

100

50+

Time of wave propagation (T)

Fig. 1. The first 10 orders of critical buckling loads with time of wave propagation.
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450

400

350 -

Critical buckling load (Ngy)
- =y N N w
8 8 8 3 8

3]

Time of wave propagation (T)

Fig. 2. The first 10 branches of critical buckling loads with time of wave propagation (n = 0).

450 ——— T T T T
e
o
400 1|t
1 I
| 1
I
3/0F 1, i
o Pl
(&) : 1
Z 300 % ‘.l .
el 1 \
8 R
= 250 Y \ \ -
2 | i)
= \ l\
€ 200~ ! \ \ \ \ 1
= 1
o l‘
E !
_g150- \\ \\ \\ \\ — i
= \
S — \\ —
100 - \_ S~ T T T -
\&R
P —
0 Il Il 1 1 1 Il ]
0 1 2 3 4 5 6 7

Time of wave propagation (T)

Fig. 3. The first 10 branches of critical buckling loads (n = 2).

experiments in the middle thickness shell that is impacted by the axial load (Wang et al., 1983; Chen et al.,
1992). This fact implies axisymmetric buckling occurs more easily as compared to non-axisymmetric buck-
ling. It is noteworthy that the curves of critical loads of odd branches (dashed lines) coalesces with one-le-
vel-higher even branches (continuous lines) as observed in Figs. 2 and 3. The phenomenon explains that
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Ner | t t !

OOy

n=0 n=1 n=2 n=3 n=4 n=5

Fig. 4. Six circumferential buckling modes (=0, 1, 2, 3,4, 5; X, =T =3.5).

half wave length of buckling mode occurs in even multiples only and buckling takes place in a short time.
Besides, dot lines, in Figs. 1-3, are stated critical load. It shows that the stated critical loads are lower than
dynamic ones before wave reflection. After wave reflection (7> 5 in figures), the axial force in shell is 2N
but N in the reflection region so as to some dynamic critical loads can be lower than the stated critical load
since the axial impact load is step one. If the wave reflects to the impacted end, the axial force in whole shell
is 2N and it can be imagined that the stated critical load reduces to half of it. In this case, the dynamic buck-
ling is the easier than stated one. The numerical result shows that the dynamic critical load is the greater
than half of the stated critical load before second reflection of the wave on the impacted end.

After solving the critical buckling load N, by bifurcation condition (48), the corresponding buckling
mode can be obtained from Egs. (47), (31) and (27). Assuming the top of shell is the wave reflection end
while the other end is subjected to an impact load, Fig. 4 shows six buckling modes (n =0, 1, 2, 3, 4, 5;
X, = T =3.5) with critical loads corresponding to Fig. 1. The order of circumferential buckling is given
by n where n = 0 represents axisymmetric buckling and » # 0 denotes non-axisymmetric modes. The level
of complexity of non-axisymmetry increases with increasing n.

It is also noticed from Figs. 1-3 that there exist many inflexions for the critical load curves. In reality, the
inflexions interrelate with the limit (34) of wrinkle of buckling mode along the centroidal axis. Fig. 5 shows
this character (the lowest branch curve in Fig. 3 is selected as the critical load and critical time
T=05,08,1.2,1.8, 3.0, 4.5, respectively) where the buckling modes for loads between two inflexions on
one curve, or there are multi-branches on one curve of critical load.

Fig. 5. Multi-branches of buckling modes.
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Reflection end

1
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Fig. 6. Buckling modes after reflection of wave (=0, 1, 2, 3,4, 5; T=6).

Reflection end

Impact end
T=5.6 T=6.0 T=6.2 T=6.7 T=7.3 T=8.0

Fig. 7. Various buckling modes with time of reflection.

Because wave reflects from the impact end to the reflection end, the buckling modes of shell have special
forms. The buckling modes after reflection of wave are shown in Figs. 6 and 7. Fig. 6 presents six buckling
modes (n=0, 1, 2, 3,4, 5, T = 6) with critical loads correspond to Fig. 1. In this figure, it is evident that
buckling shapes are extrusive round the reflection end of the shell. Corresponding to the critical loads in
Fig. 3, Fig. 7 displays various buckling modes of reflection with time (n =2; T=15.6, 6.0, 6.7, 7.3, 8.0,
respectively) where the leftmost mode in the figure refers to the particular moment the wave just arrives
at the reflection end. Buckling at the reflection end takes place easily as illustrated in Figs. 6 and 7. This
phenomenon agrees with experiments where buckling may occur first at the impact end for high impact
load, or otherwise buckling may occur at the reflection end.

9. Conclusion

It has been demonstrated that dynamic buckling of finite cylindrical shells is a local phenomenon at some
positions in the first instance and it extends in correlation with propagation and reflection of waves. The
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primary factors influencing buckling are the impact loads and the boundary condition. The boundary con-
dition is not only an expression of displacements but it forms a problem of mixed boundary conditions
involving geometric and natural conditions. An effective Hamiltonian system has been introduced to the
dynamic buckling of structures without Lagrange formulation. A symplectic space has also been introduced
where the primary and canonical variables incidentally describe the mixed problem. Employing a sub-
symplectic system, the non-axisymmetric problem can be precisely reduced to a problem of eigenvalues
and eigensolutions where the eigenvalues denote the critical buckling loads and eigensolutions denote
the buckling modes. Significant physical implications of dynamic buckling of shells have been illustrated
and discussed.
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